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Abstract. The phase equilibria in the CuSbS; - Sbh,Ss - SbSI compositions intervals of the Cu-Sb-S-I
quaternary system have been investigated by differential thermal analysis and X-ray phase analysis
methods. The boundary quasi-binary section CuShS, - SbSI, two internal polythermal sections of the
phase diagram, as well as, the projection of the liquidus surface of the system were constructed. Primary
crystallization areas of phases, types and coordinates of non- and monovariant equilibria were
determined. It was established that, the system is quaternary and belongs to the nonvariant eutectic type.
The liquidus surface consists of three distinct regions, each representing the direct crystallization of one
of the primary compounds from the melt. These regions are separated by three eutectic curves defining
the boundaries between them.
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1. Introduction

The study of phase equilibria in multicomponent systems is essential for
understanding the thermodynamic stability and phase relationships of materials with
potential technological applications. These studies are particularly important for systems
involving sulfides, which are of significant interest due to their applications in emerging
technologies such as photovoltaics, thermoelectric devices, optoelectronics and
environmental sensors etc. (Ivanov-Shic & Murin, 2000; Babanly et al., 2019; Jamal et
al., 2023; Saeed et al., 2024; Babanly et al., 2024; Mashadiyeva et al., 2024; Aliyev et
al., 2024). The system CuSbS; - Sh,Ss - SbSI (A) represents a chemically rich region of
interest due to the unique properties of its constituent compounds, which are widely
recognized for their applications in advanced technologies.
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Most ternary Cu-Sb-sulfides are naturally occurring minerals that have been
extensively studied for their potential as electronic materials, exhibiting remarkable
properties such as high photoelectric performance, photovoltaic efficiency, radiation
detection capabilities and thermoselectric functionality. Their abundance in nature and
environmentally friendly characteristics have further driven recent research
advancements in these materials (Chetty et al., 2015; Loranca-Ramos et al., 2017; Van
Embden et al., 2013; Lu et al., 2012). CuSbS; (chalcostibite) is a p-type semiconductor
known for its potential in solar energy applications due to its direct bandgap and earth-
abundant, non-toxic constituents (Yang et al., 2014; Van Embden et al., 2020; Wang et
al., 2021; Welch et al., 2016; Mashadiyeva et al., 2021). Sbh>Sz (stibnite), an antimony
sulfide mineral, has garnered attention for its high optical absorption coefficient and
excellent thermoelectric properties (Mashadiyeva et al., 2021; Farhana & Bandara, 2022;
Ishaq et al., 2020; Kondrotas et al., 2018; Zhang et al., 2018). Similarly, SbSI exhibits
remarkable pyroelectric and piezoelectric properties, making it suitable for optical and
energy conversion applications (Simsek et al., 2015; Tamilselvan & Bhattacharyya, 2016;
Brown et al., 1996; Surthi et al., 2002).

Understanding the phase relationships within this ternary system is critical for
tailoring materials with optimized properties for specific applications. Furthermore, the
coexistence of these phases at varying compositions and temperatures offers insights into
the stability of complex sulfide-based systems. This study, as a continuation of our
systematic studies in the Cu-Sb-S-I quaternary system (Mammadli et al., 2022a, 2022b,
2021, 2023), focuses on the systematic investigation of the phase equilibria in CuShS; -
Sh>Ss - SbSI composition range. The research aims to construct a comprehensive phase
diagram, identify the stable and metastable phases, understand the interactions and
compatibility of the components and explore how thermal and compositional variations
influence the system’s behavior. The results of this work will not only advance the
fundamental understanding of complex sulfide systems but also provide a valuable
framework for the development of novel materials with applications in energy, electronics
and environmental technologies.

Two boundary sections of the CuShS;-Sh,S3-SbSI subsystem, specifically the
CuShS;-Sh>S; and Sh»Ss-SbSI systems, have been studied in earlier research. Both
systems form a simple eutectic phase diagram (Babanly et al., 1993; Aliyev et al., 2017).

The phase relationships within the CuSbS>-SbSI boundary system have been
investigated for the first time in this study and the findings will be thoroughly examined
and discussed in the subsequent sections of this paper.

2.  Experimental part

Alloys of the system were prepared from the preliminarily synthesized and
identified Sh>Ss, CuShS2 and SbSI compounds. Elemental copper, antimony, sulphur and
iodine of high purity from Alpha Aesar and Sigma Aldrich were used for synthesis.

Initial binary (Sh2Ss) and ternary (CuSbSz and ShSI) compounds were synthesized
from the elemental components in an evacuated (~107 Pa) silica ampoules followed by a
specially designed method taking into account the high volatility of iodine and sulfur. The
synthesis was performed in an inclined two-zone furnace, with the hot zone kept at a
temperature 20-30°C higher than the corresponding melting point of the synthesized
compound, whereas the temperature of the cold zone was kept at about 400K considering
the high vapor pressure of iodine. After the main portion of iodine and sulfur had reacted,
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the ampoules were relocated such that the products could melt at relevant melting
temperatures. Ampoules were kept stirring at corresponding temperatures for 2 hours and
the furnaces cooled gradually. The purity and individuality of the obtained products were
monitored using differential thermal analysis (DTA) and powder X-ray diffraction
(PXRD) methods. The heating curves and the diffraction pattern for some of the
constituent compounds of the system under study are given in Figure 1 and 2. Both

methods prove identity and purity of the synthesized compounds.
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Figure 1. Heating curves of the constituent compounds of the system CuSbS,— Sh,Sz;— SbSI
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Two sets of samples (0.5 g by mass each) were prepared by co-melting of different
proportions of the preliminarily synthesized binary and ternary compounds. After
melting, most of the alloys were annealed at about ~20-30°C below the solidus
temperature for ~800 hours in order to achieve complete homogenization.

The DTA and PXRD techniques were employed to verify the purity and identity of
the synthesized compounds, as well as to perform experimental investigations. DTA of
the samples was conducted in evacuated quartz ampoules using a 404 F1 Pegasus System
differential scanning calorimeter. The measurement data were analyzed with the
NETZSCH Proteus Software, ensuring a temperature accuracy of £2°C. XRD analysis of
the annealed alloys was performed at room temperature using a Bruker D2 PHASER
diffractometer with CuKou radiation. The diffraction patterns were indexed using the
Topas 4.2 Software.
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Figure 2. Diffraction pattern of the Sh,Ss compound
3. Results and discussion

On the phase diagram of the system CuShS: - Sh,S3 - ShSI and its various sections,
the compositions of alloys are expressed in equal numbers of atoms using the
corresponding coefficients in front of their formulas. This is identical to the expression
of composition in atomic percent and allows these data to be used in the general phase
diagram of the Cu-Sh-S system without recalculation of composition.

3.1. CuShs; - SbSI boundary quasi-binary system

The phase diagram of the CuSbS; - SbSI boundary system is quasi binary due to the
congruent melting character of its both compounds. As it can be seen from the T-x
diagram constructed based on the DTA results (Figure 3), the system is of a simple
eutectic type. Eutectic equilibrium
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L <> CuSbsS; + SbSl (1)

is established at 385 °C and ~72 mol% ShSI composition.

By constructing the Tamman triangle, it was determined that solubility based on the
initial compounds is practically nonexistent and the composition of the eutectic was
clarified (Figure 3).

The constructed phase diagram was also confirmed using the powder PXRD
method. Figure 4 presents the powder diffraction patterns of samples with various
compositions along the system. As observed, the diffraction patterns of all intermediate
alloys are two-phase, consisting of the combined reflection lines of the initial compounds
that constitute the system.
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Figure 3. T-x phase diagram of the system CuShS, - ShSI
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Figure 4. PXRD spectrums of some alloys along the system CuShS; — SbSI.
Composition of alloys: 1 - ShSI; 2 - 80 mol % SbSl; 3 - 60 mol % SbSl;
4 - 40 mol % ShSI; 5 - 20 mol % SbSlI; 6 - CuSbS,
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3.2. Projection of the liquidus surface (Figure 5)

The projection of the liquidus surface of the system A on the concentration triangle
is given in Figure 5. As previously noted, all three boundary sections of the system are
quasi-binary, which means that the concentration triangle CuSbS,-Sb,S3-ShSI represents
an independent subsystem. The liquidus surface of the system (A) is characterized by
non-variant eutectic equilibrim.

The liquidus surface consists of three regions that represent the direct crystallization
of the primary compounds from the melt. These regions are bounded by three eutectic
curves that connect them.

The eutectic points of the side quasibinary systems are characterized by the
following coordinates:

e1: 496 °C and 60 mol% Sb-Ss,

e2: 385 °C and 72 mol% ShSl,

es: 387 °C and 70 mol% ShSI.

The curves originating from these points, denoted as e1E, e2E and e3E, represent the
monovariant eutectic equilibria:

LeiE <> CuSbSz + SbzS3 (496 - 365°C) 2)
LesE <> CuSbSz+ SbSI (385 - 365°C) (3)
LesE <> ShySa+ SbSI (387-365°C) (4)

The ternary eutectic point (E) is characterized by a temperature of 365 °C and
reflects the nonvariant eutectic crystallization of the primary compounds from the liquid
phase:

Le <> CuSbS2 + SbS3 + SbSI (5)

All samples within the system, regardless of composition, undergo complete
crystallization following this reaction (Figure 5).

CuSbs, 20 40 [B] 60 80 Sb.S,

Figure 5. Projection of the liquidus surface of the system CuShS,-Sh,S3-SbSI.
Primary crystallization fields: 1 - CuSbS, 2 - Sh,S3; 3 — ShSI.
Dotted lines are studied polythermal sections

45



NEW MATERIALS, COMPOUNDS AND APPLICATIONS, V.9, N.1, 2025

3.3. Polythermal sections

The CuSbS: - [A] (Figure 6) and SbSI - [B] (Figure 7) polythermal sections of the
system A are given below and analyzed in context with the projection of the liquidus
surface (Figure 5) of the system. Here, [A] and [B] are 1:1 mix ratios of the constituent
compounds of the relevant side binary systems, consequently.

The system CuSbS: - [A] (Figure 6).

This section passes through the liquidus surfaces of the CuSbS, and Sb;Ss
compounds and intersects the eutectic equilibrium curve eiE. The left branch of the
liquidus reflects the primary crystallization of the CuSbS, compound from the molten
alloy, while the right branch corresponds to the primary crystallization of the Sh,S3
compound. The intersection point of these curves (~26 mol% CuSbS2, 430 °C) marks the
onset of the crystallization of the CuShS; + Sh2Ss eutectic mixture according to the
monovariant reaction (2).

Below the liquidus curves, crystallization proceeds via the reactions described by
(3) and (4). This leads to the formation of two three-phase regions in the phase diagram:
L + CuSbS, + Sh,Ss and L + Sh.S3 + ShSI. The crystallization process concludes with
the nonvariant eutectic reaction (5), represented by a horizontal line at 365°C.
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300¢ ’
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Figure 6. T-x phase diagram of the CuShS; - [A] polythermal section

The system Sb,Sz - [B] (Figure 7)

This section passes through the primary crystallization surfaces of the CuShS, and
SbSI compounds and intersects the eutectic curve e:E. In the composition range of 0-65
mol% SbSI, CuSbS; crystals are the first to precipitate from the liquid phase, while in the
range of 65-100 mol% SbSl, the crystals of SbSI are the primary phases to crystallize.
Below the liquidus, crystallization proceeds through the monovariant eutectic reactions
described by (2) and (3), leading to the formation of two three-phase regions on the T-x
diagram: L + Sbh2Ss + CuSbSz and L + Sh,Ss + ShSI. Finally, the complete crystallization
of all samples occurs at 365 °C through the nonvariant eutectic reaction described by (5).

In Figure 7, a portion of the liquidus curve for the CuShS> compound and the
horizontal line corresponding to reaction (3) are shown as dashed lines. This
representation is due to the low intensity of the effects associated with these processes on
the DTA curves and their overlap with more intense nearby peaks.
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In conclusion, it should be noted that the DTA results of several additional samples
along the two examined polythermal sections have allowed for a more precise
determination of the trajectories of isotherms on the liquidus surfaces, the paths of
monovariant equilibrium curves and the coordinates of the ternary eutectic point.
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Figure 7. T-x phase diagram of the [B] - SbSI polythermal section
4.  Conclusion

The phase equilibria in the CuShS; - Sb2Ss - SbSI composition range of the Cu-Sh-
S-1 quaternary system have been studied for the first time. Several polythermal sections
of the phase diagram including the CuShS»>-SbSI1 boundary system and T-x-y projection
of the liquidus surface of the system were obtained by co-analysis of experimental results
along with the literature data on boundary binary systems. It was defined that the system
is of eutectic type. Types and coordinates of non- and monovariant equilibria, as well as,
primary crystallization areas of phases were determined.
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